bezier-easing

Bezier Curve based easing functions for Javascript animations

此脚本不应直接安装。它是供其他脚本使用的外部库,要使用该库请加入元指令 // @require https://update.gf.qytechs.cn/scripts/7108/29098/bezier-easing.js

您需要先安装一个扩展,例如 篡改猴Greasemonkey暴力猴,之后才能安装此脚本。

You will need to install an extension such as Tampermonkey to install this script.

您需要先安装一个扩展,例如 篡改猴暴力猴,之后才能安装此脚本。

您需要先安装一个扩展,例如 篡改猴Userscripts ,之后才能安装此脚本。

您需要先安装一款用户脚本管理器扩展,例如 Tampermonkey,才能安装此脚本。

您需要先安装用户脚本管理器扩展后才能安装此脚本。

(我已经安装了用户脚本管理器,让我安装!)

您需要先安装一款用户样式管理器扩展,比如 Stylus,才能安装此样式。

您需要先安装一款用户样式管理器扩展,比如 Stylus,才能安装此样式。

您需要先安装一款用户样式管理器扩展,比如 Stylus,才能安装此样式。

您需要先安装一款用户样式管理器扩展后才能安装此样式。

您需要先安装一款用户样式管理器扩展后才能安装此样式。

您需要先安装一款用户样式管理器扩展后才能安装此样式。

(我已经安装了用户样式管理器,让我安装!)

// ==UserScript==
// @name        bezier-easing
// @version     0.4.4
// @description Bezier Curve based easing functions for Javascript animations
// @license		MIT (https://github.com/gre/bezier-easing/blob/master/LICENSE)
// ==/UserScript==

/**
 * BezierEasing - use bezier curve for transition easing function
 * by Gaëtan Renaudeau 2014 – MIT License
 *
 * Credits: is based on Firefox's nsSMILKeySpline.cpp
 * Usage:
 * var spline = BezierEasing(0.25, 0.1, 0.25, 1.0)
 * spline(x) => returns the easing value | x must be in [0, 1] range
 *
 */
(function (definition) {
  if (typeof exports === "object") {
    module.exports = definition();
  } else if (typeof define === 'function' && define.amd) {
    define([], definition);
  } else {
    window.BezierEasing = definition();
  }
}(function () {
  var global = this;

  // These values are established by empiricism with tests (tradeoff: performance VS precision)
  var NEWTON_ITERATIONS = 4;
  var NEWTON_MIN_SLOPE = 0.001;
  var SUBDIVISION_PRECISION = 0.0000001;
  var SUBDIVISION_MAX_ITERATIONS = 10;

  var kSplineTableSize = 11;
  var kSampleStepSize = 1.0 / (kSplineTableSize - 1.0);

  var float32ArraySupported = 'Float32Array' in global;

  function BezierEasing (mX1, mY1, mX2, mY2) {
    // Validate arguments
    if (arguments.length !== 4) {
      throw new Error("BezierEasing requires 4 arguments.");
    }
    for (var i=0; i<4; ++i) {
      if (typeof arguments[i] !== "number" || isNaN(arguments[i]) || !isFinite(arguments[i])) {
        throw new Error("BezierEasing arguments should be integers.");
      } 
    }
    if (mX1 < 0 || mX1 > 1 || mX2 < 0 || mX2 > 1) {
      throw new Error("BezierEasing x values must be in [0, 1] range.");
    }

    var mSampleValues = float32ArraySupported ? new Float32Array(kSplineTableSize) : new Array(kSplineTableSize);
   
    function A (aA1, aA2) { return 1.0 - 3.0 * aA2 + 3.0 * aA1; }
    function B (aA1, aA2) { return 3.0 * aA2 - 6.0 * aA1; }
    function C (aA1)      { return 3.0 * aA1; }
   
    // Returns x(t) given t, x1, and x2, or y(t) given t, y1, and y2.
    function calcBezier (aT, aA1, aA2) {
      return ((A(aA1, aA2)*aT + B(aA1, aA2))*aT + C(aA1))*aT;
    }
   
    // Returns dx/dt given t, x1, and x2, or dy/dt given t, y1, and y2.
    function getSlope (aT, aA1, aA2) {
      return 3.0 * A(aA1, aA2)*aT*aT + 2.0 * B(aA1, aA2) * aT + C(aA1);
    }

    function newtonRaphsonIterate (aX, aGuessT) {
      for (var i = 0; i < NEWTON_ITERATIONS; ++i) {
        var currentSlope = getSlope(aGuessT, mX1, mX2);
        if (currentSlope === 0.0) return aGuessT;
        var currentX = calcBezier(aGuessT, mX1, mX2) - aX;
        aGuessT -= currentX / currentSlope;
      }
      return aGuessT;
    }

    function calcSampleValues () {
      for (var i = 0; i < kSplineTableSize; ++i) {
        mSampleValues[i] = calcBezier(i * kSampleStepSize, mX1, mX2);
      }
    }

    function binarySubdivide (aX, aA, aB) {
      var currentX, currentT, i = 0;
      do {
        currentT = aA + (aB - aA) / 2.0;
        currentX = calcBezier(currentT, mX1, mX2) - aX;
        if (currentX > 0.0) {
          aB = currentT;
        } else {
          aA = currentT;
        }
      } while (Math.abs(currentX) > SUBDIVISION_PRECISION && ++i < SUBDIVISION_MAX_ITERATIONS);
      return currentT;
    }

    function getTForX (aX) {
      var intervalStart = 0.0;
      var currentSample = 1;
      var lastSample = kSplineTableSize - 1;

      for (; currentSample != lastSample && mSampleValues[currentSample] <= aX; ++currentSample) {
        intervalStart += kSampleStepSize;
      }
      --currentSample;

      // Interpolate to provide an initial guess for t
      var dist = (aX - mSampleValues[currentSample]) / (mSampleValues[currentSample+1] - mSampleValues[currentSample]);
      var guessForT = intervalStart + dist * kSampleStepSize;

      var initialSlope = getSlope(guessForT, mX1, mX2);
      if (initialSlope >= NEWTON_MIN_SLOPE) {
        return newtonRaphsonIterate(aX, guessForT);
      } else if (initialSlope === 0.0) {
        return guessForT;
      } else {
        return binarySubdivide(aX, intervalStart, intervalStart + kSampleStepSize);
      }
    }

    var _precomputed = false;
    function precompute() {
      _precomputed = true;
      if (mX1 != mY1 || mX2 != mY2)
        calcSampleValues();
    }

    var f = function (aX) {
      if (!_precomputed) precompute();
      if (mX1 === mY1 && mX2 === mY2) return aX; // linear
      // Because JavaScript number are imprecise, we should guarantee the extremes are right.
      if (aX === 0) return 0;
      if (aX === 1) return 1;
      return calcBezier(getTForX(aX), mY1, mY2);
    };

    f.getControlPoints = function() { return [{ x: mX1, y: mY1 }, { x: mX2, y: mY2 }]; };

    var args = [mX1, mY1, mX2, mY2];
    var str = "BezierEasing("+args+")";
    f.toString = function () { return str; };

    var css = "cubic-bezier("+args+")";
    f.toCSS = function () { return css; };

    return f;
  }

  // CSS mapping
  BezierEasing.css = {
    "ease":        BezierEasing(0.25, 0.1, 0.25, 1.0),
    "linear":      BezierEasing(0.00, 0.0, 1.00, 1.0),
    "ease-in":     BezierEasing(0.42, 0.0, 1.00, 1.0),
    "ease-out":    BezierEasing(0.00, 0.0, 0.58, 1.0),
    "ease-in-out": BezierEasing(0.42, 0.0, 0.58, 1.0)
  };

  return BezierEasing;

}));