bezier-easing

Bezier Curve based easing functions for Javascript animations

此腳本不應該直接安裝,它是一個供其他腳本使用的函式庫。欲使用本函式庫,請在腳本 metadata 寫上: // @require https://update.gf.qytechs.cn/scripts/7108/29098/bezier-easing.js

您需要先安裝使用者腳本管理器擴展,如 TampermonkeyGreasemonkeyViolentmonkey 之後才能安裝該腳本。

You will need to install an extension such as Tampermonkey to install this script.

您需要先安裝使用者腳本管理器擴充功能,如 TampermonkeyViolentmonkey 後才能安裝該腳本。

您需要先安裝使用者腳本管理器擴充功能,如 TampermonkeyUserscripts 後才能安裝該腳本。

你需要先安裝一款使用者腳本管理器擴展,比如 Tampermonkey,才能安裝此腳本

您需要先安裝使用者腳本管理器擴充功能後才能安裝該腳本。

(我已經安裝了使用者腳本管理器,讓我安裝!)

你需要先安裝一款使用者樣式管理器擴展,比如 Stylus,才能安裝此樣式

你需要先安裝一款使用者樣式管理器擴展,比如 Stylus,才能安裝此樣式

你需要先安裝一款使用者樣式管理器擴展,比如 Stylus,才能安裝此樣式

你需要先安裝一款使用者樣式管理器擴展後才能安裝此樣式

你需要先安裝一款使用者樣式管理器擴展後才能安裝此樣式

你需要先安裝一款使用者樣式管理器擴展後才能安裝此樣式

(我已經安裝了使用者樣式管理器,讓我安裝!)

// ==UserScript==
// @name        bezier-easing
// @version     0.4.4
// @description Bezier Curve based easing functions for Javascript animations
// @license		MIT (https://github.com/gre/bezier-easing/blob/master/LICENSE)
// ==/UserScript==

/**
 * BezierEasing - use bezier curve for transition easing function
 * by Gaëtan Renaudeau 2014 – MIT License
 *
 * Credits: is based on Firefox's nsSMILKeySpline.cpp
 * Usage:
 * var spline = BezierEasing(0.25, 0.1, 0.25, 1.0)
 * spline(x) => returns the easing value | x must be in [0, 1] range
 *
 */
(function (definition) {
  if (typeof exports === "object") {
    module.exports = definition();
  } else if (typeof define === 'function' && define.amd) {
    define([], definition);
  } else {
    window.BezierEasing = definition();
  }
}(function () {
  var global = this;

  // These values are established by empiricism with tests (tradeoff: performance VS precision)
  var NEWTON_ITERATIONS = 4;
  var NEWTON_MIN_SLOPE = 0.001;
  var SUBDIVISION_PRECISION = 0.0000001;
  var SUBDIVISION_MAX_ITERATIONS = 10;

  var kSplineTableSize = 11;
  var kSampleStepSize = 1.0 / (kSplineTableSize - 1.0);

  var float32ArraySupported = 'Float32Array' in global;

  function BezierEasing (mX1, mY1, mX2, mY2) {
    // Validate arguments
    if (arguments.length !== 4) {
      throw new Error("BezierEasing requires 4 arguments.");
    }
    for (var i=0; i<4; ++i) {
      if (typeof arguments[i] !== "number" || isNaN(arguments[i]) || !isFinite(arguments[i])) {
        throw new Error("BezierEasing arguments should be integers.");
      } 
    }
    if (mX1 < 0 || mX1 > 1 || mX2 < 0 || mX2 > 1) {
      throw new Error("BezierEasing x values must be in [0, 1] range.");
    }

    var mSampleValues = float32ArraySupported ? new Float32Array(kSplineTableSize) : new Array(kSplineTableSize);
   
    function A (aA1, aA2) { return 1.0 - 3.0 * aA2 + 3.0 * aA1; }
    function B (aA1, aA2) { return 3.0 * aA2 - 6.0 * aA1; }
    function C (aA1)      { return 3.0 * aA1; }
   
    // Returns x(t) given t, x1, and x2, or y(t) given t, y1, and y2.
    function calcBezier (aT, aA1, aA2) {
      return ((A(aA1, aA2)*aT + B(aA1, aA2))*aT + C(aA1))*aT;
    }
   
    // Returns dx/dt given t, x1, and x2, or dy/dt given t, y1, and y2.
    function getSlope (aT, aA1, aA2) {
      return 3.0 * A(aA1, aA2)*aT*aT + 2.0 * B(aA1, aA2) * aT + C(aA1);
    }

    function newtonRaphsonIterate (aX, aGuessT) {
      for (var i = 0; i < NEWTON_ITERATIONS; ++i) {
        var currentSlope = getSlope(aGuessT, mX1, mX2);
        if (currentSlope === 0.0) return aGuessT;
        var currentX = calcBezier(aGuessT, mX1, mX2) - aX;
        aGuessT -= currentX / currentSlope;
      }
      return aGuessT;
    }

    function calcSampleValues () {
      for (var i = 0; i < kSplineTableSize; ++i) {
        mSampleValues[i] = calcBezier(i * kSampleStepSize, mX1, mX2);
      }
    }

    function binarySubdivide (aX, aA, aB) {
      var currentX, currentT, i = 0;
      do {
        currentT = aA + (aB - aA) / 2.0;
        currentX = calcBezier(currentT, mX1, mX2) - aX;
        if (currentX > 0.0) {
          aB = currentT;
        } else {
          aA = currentT;
        }
      } while (Math.abs(currentX) > SUBDIVISION_PRECISION && ++i < SUBDIVISION_MAX_ITERATIONS);
      return currentT;
    }

    function getTForX (aX) {
      var intervalStart = 0.0;
      var currentSample = 1;
      var lastSample = kSplineTableSize - 1;

      for (; currentSample != lastSample && mSampleValues[currentSample] <= aX; ++currentSample) {
        intervalStart += kSampleStepSize;
      }
      --currentSample;

      // Interpolate to provide an initial guess for t
      var dist = (aX - mSampleValues[currentSample]) / (mSampleValues[currentSample+1] - mSampleValues[currentSample]);
      var guessForT = intervalStart + dist * kSampleStepSize;

      var initialSlope = getSlope(guessForT, mX1, mX2);
      if (initialSlope >= NEWTON_MIN_SLOPE) {
        return newtonRaphsonIterate(aX, guessForT);
      } else if (initialSlope === 0.0) {
        return guessForT;
      } else {
        return binarySubdivide(aX, intervalStart, intervalStart + kSampleStepSize);
      }
    }

    var _precomputed = false;
    function precompute() {
      _precomputed = true;
      if (mX1 != mY1 || mX2 != mY2)
        calcSampleValues();
    }

    var f = function (aX) {
      if (!_precomputed) precompute();
      if (mX1 === mY1 && mX2 === mY2) return aX; // linear
      // Because JavaScript number are imprecise, we should guarantee the extremes are right.
      if (aX === 0) return 0;
      if (aX === 1) return 1;
      return calcBezier(getTForX(aX), mY1, mY2);
    };

    f.getControlPoints = function() { return [{ x: mX1, y: mY1 }, { x: mX2, y: mY2 }]; };

    var args = [mX1, mY1, mX2, mY2];
    var str = "BezierEasing("+args+")";
    f.toString = function () { return str; };

    var css = "cubic-bezier("+args+")";
    f.toCSS = function () { return css; };

    return f;
  }

  // CSS mapping
  BezierEasing.css = {
    "ease":        BezierEasing(0.25, 0.1, 0.25, 1.0),
    "linear":      BezierEasing(0.00, 0.0, 1.00, 1.0),
    "ease-in":     BezierEasing(0.42, 0.0, 1.00, 1.0),
    "ease-out":    BezierEasing(0.00, 0.0, 0.58, 1.0),
    "ease-in-out": BezierEasing(0.42, 0.0, 0.58, 1.0)
  };

  return BezierEasing;

}));